If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+16q+64=0
a = 1; b = 16; c = +64;
Δ = b2-4ac
Δ = 162-4·1·64
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-16}{2}=-8$
| 31-8x=15+9x | | -18x+9=243 | | -3(3-x)=-48 | | 7(7x-5)-9(3-8x)+8(-7x+8)=-2(8-5x) | | (4x+9)^2-49=0 | | n+4/5+n/6-n-4/6+1=0 | | 2.73+19.3g=19g | | 3j^2-14j+15=0 | | 50=8y+2 | | -3x1/3=5/3 | | -5-25x=65 | | 8/15=n/25 | | 10.5=2500/x | | 28m+19=42m+12 | | 3(8+x)=3 | | -7.5-1.5h=-0.9h | | b/5+1/9=14 | | 25+1t=20+1.50t | | 22-(6/5)x=-(6/5)+22 | | 30x+7=367 | | 3x^2-57x+26=0 | | 25x^2-150x+222=0 | | 17x-(9x-2)=74 | | 2k=-16+k | | 1/5y+2=6 | | 2h+9=69 | | z-7/18=5/18 | | 3j^2+13j-10=0 | | -4d+18-10d=-13d-1 | | 160=7b+6 | | 3x-10+5x=5x-7 | | 3x-11=74+6 |